THF-Water solvation influences xylan hydrolysis rate and subsequent furfural product formation

Objective:
- Elucidate xylan behavior under THF-Water cosolvent used during co-solvent enhanced lignocellulosic fractionation (CELF).

Approach:
- We paired molecular simulation and experimental evidence, and revealed how the solvation of xylan in an water–tetrahydrofuran (THF) pretreatment can lead to single-pot conversion of biomass xylose to furfural and cellulose to 5-hydroxymethylfurfural.

Results:
- Xylan is solvated by both THF and water at CELF pretreatment temperatures.
- Partial solvation by THF was found to slow down xylan solubilization.

Significance:
- In aqueous solution, xylan is depolymerized faster than cellulose is, making it difficult to convert both biopolymers to fuel precursors at the same time.
- We showed that solvation by THF:water (CELF) slows the rate of xylan hydrolysis, allowing an economically desirable “single-pot” conversion of both xylan and cellulose to fuels and products.

BER Biofuels SFA at ORNL
(Dynamic Visualization of Lignocellulose degradation …)