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Abstract

The Instantaneous Normal Mode theory predicts that the self-di�usion con-
stant D is proportional to the fraction of di�usive modes fu (D ∝ fu

α). For
a sample con�guration the curvature of the potential energy is computed
along all modes. The di�usive modes are a subset of those with a nega-
tive curvature. Di�erent �ltering methods were successfully used to compute
this subset for simple liquids. We evaluated those methods on a protein
over a temperature range from 20 − 300 K by testing the expected relation
D ∝ fu

α with D computed from the slope of the mean square displacement
of a molecular dynamics trajectory. The �escape mode� method supplied a
good agreement over two orders of magnitude thus enabling the computation
of temperature dependent properties of proteins from a few sampled con�g-
urations. The so computed self-di�usion constant reproduces the dynamical
transition. For the present however, the computing time is too large for
practical use.

Die Instantaneous Normal Mode Theorie sagt voraus, dass die Selbstdi�u-
sionskonstante D proportional zum Anteil der zur Di�usion beitragenden
Moden fu (D ∝ fu

α) ist. Für eine Beispielkon�guration wird die Krüm-
mung der potentiellen Energie längst aller Moden berechnet. Die beitragen-
den Moden sind eine Teilmenge derer mit negativer Krümmung.Verschiedene
Filtermethoden wurden zuvor erfolgreich verwendet, um diese Teilmenge für
einfache Flüssigkeiten zu berechnen. Wir haben diese Methoden an einem
Protein im Bereich 20 − 300 K getestet, indem wir die vorhergesagte Re-
lation D ∝ fu

α überprüft haben, wobei D aus der Steigung des mittleren
quadratischen Abstandes einer Molekulardynamik berechnet wurde. Die �es-
cape mode� Methode hat eine gute Übereinstimmung über zwei Gröÿenord-
nungen geliefert und erlaubt somit, temperaturabhängige Gröÿen ausgehend
von wenigen Beispielkon�gurationen zu berechnen. Die so berechnete Selbst-
di�usionskonstante zeigt den bekannten Verlauf der �dynamical transition�.
Die Rechenzeit ist jedoch vorerst zu groÿ für praktische Anwendungen.
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Chapter 1

Introduction

1.1 Objective of thesis
The role of anharmonic dynamics in the function of proteins has been widely
recognized in recent years [Daniel et al., 1998, 2003, Frauenfelder et al., 1988].
Proteins have a wide spectrum of dynamical processes ranging from femtosec-
ond localized harmonic vibrations to collective di�usive movements with time
scales up to the millisecond range. Despite of di�erences of many magnitudes
in time scale the motions are often coupled, complicating the study by ex-
periments and simulations.

Several experiments and simulations [Bizzarri et al., 2000, Doster et al.,
1989, Dunn et al., 2000, Hayward and Smith, 2002, Parak et al., 1981, Smith
et al., 1990, Tilton Jr et al., 1992] showed that at 180−220 K the mean-square
displacement as a function of temperature, representing the dynamics, shows
a change in the slope. This indicates large amplitude atomic displacements
above this temperature. This slope change is called �Dynamical Transition�
(DT) and is now understood as the activation of anharmonic dynamics. It
also coincides with the onset of biological function [Ferrand et al., 1993, Parak
et al., 1980]. Details like the role of hydration is an area of active research
[Hayward and Smith, 2002, Kurkal et al., 2005, Reat et al., 2000].

To study those dynamical processes di�erent analytical methods have
been developed. Normal mode analysis (NMA) uses a second order harmonic
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approximation of the potential energy around an equilibrium con�guration.
In the region of validity of this approximation, the dynamics are described
completely by the second derivative matrix of this energy. This descrip-
tion includes the vibrational frequency of all possible independent motions,
which are also called modes. These frequencies are typically visualized as a
histogram and then called frequency spectrum.

The Instantaneous Normal Mode (INM) method [Keyes, 1994, 1997, Mad-
an and Keyes, 1993, Seeley and Keyes, 1989] is also based on the second
derivative of the potential energy. Unlike for the NMA the Hessian matrix
is computed for sample con�gurations generated at a certain temperature
instead of fully minimized con�gurations. Earlier INM studies were pub-
lished mainly about simple supercooled liquids with a focus on glass tran-
sition, mode-coupling temperature, and crystallization [Keyes, 1995, Keyes
et al., 1997, La Nave et al., 2000, Li et al., 1998, Madan and Keyes, 1993,
Sciortino and Tartaglia, 1997]. Those results have demonstrated that it is
possible to calculate temperature dependent dynamical properties, such as
the self-di�usion constant, from a few sampled con�gurations. This is done
by computing the fraction of unstable modes, which are a subset of the neg-
ative modes and are proportional to these dynamical properties. To reach a
good agreement it was important to compute this subset accurately. For this
task di�erent �ltering methods have been proposed.

Those types of studies, which connect these dynamical properties to the
fraction of unstable modes have not been done for proteins so far. For proteins
the INM method was only used for studies on energy barriers and vibrational
relaxation. The �rst ones compute the temperature dependent barrier height
distribution by using the fraction of unstable modes and a few assumptions
leading to the functional form of the distribution [Straub and Choi, 1994,
Straub and Thirumalai, 1993]. For the second ones, the whole INM spectrum
was used similar to a NMA spectrum to identify modes and their frequency
shift. Thus instead of using the fraction of unstable modes, which focuses
on the di�erence between positive and negative eigenvalues, they ignored the
negative part of the spectrum [Bu and Straub, 2003].

In this work the goal is to investigate this connection, meaning whether
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computing the self-di�usion constant in con�gurational space using the INM
method is also possible for proteins. This is done for temperatures around the
dynamical transition to see if the INM method can reproduce this transition.
As for liquids it is essential to accurately compute the subset of unstable
modes out of all negative modes, so all �ltering proposed for liquids have
been evaluated for proteins.

The rest of the introduction will give a broad overview about proteins,
their structure and dynamics and how to simulate them. More details can
be taken from any standard textbook on biophysics e.g. [Lesk, 2004].

1.2 Protein Structure and Dynamics
Proteins are unbranched polymer chains of amino acids connected by pep-
tide bonds. An amino acid has the general formula NH2CαRHCO2H where
R stands for the group which is speci�c for each of the 20 di�erent natu-
rally occurring amino acids. Proteins play a vital role in various biological
processes ranging from structural to functional and thus are central building
blocks of all cells.

The amino acid sequence, meaning the order of the residues along the
chain, de�nes the structure of a protein together with the chemical and physi-
cal conditions. The sequence itself is called the primary structure. The native
state of a protein is commonly a compact folded one. Subparts of proteins
form reoccurring patterns like α-helices and β-strands. These patterns are
called the secondary structure. The three dimensional arrangement of the
whole protein, beyond these patterns, is called tertiary structure. It has
been resolved for many proteins by X-ray scattering or nuclear magnetic res-
onance (NMR) experiments. The solved structures are available on the PDB
database [Berman et al., 2000, 2003] and can be downloaded from there as
a starting structure for simulations.

The question how proteins form the tertiary structure only based on the
amino acid sequence is called the folding problem. Trying every possible
con�guration with one con�guration every 100 fs would result in a time longer
than the existence of the universe. This is known as the Levinthal paradox.
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Overcoming this paradox is possible by using the fact that the free energy
is lower near the native state and so can be interpreted as a folding funnel,
enabling the protein to fold in biological time scales.

Because both the folding process and many functional processes are re-
lated to the possible dynamics of proteins, these dynamics are intensely stud-
ied. The time scale of these dynamics range over more than 12 orders of
magnitude. Since a full characterization of dynamics on all time scales is
di�cult, it is common to de�ne di�erent groups of possible dynamics, such
as harmonic and anharmonic. The distribution of possible dynamics is often
represented as a frequency spectrum, with the number of possible vibrational
modes versus their frequency.

Harmonic dynamics are all short range (< 1Å), small time scale (< 20 fs)
vibrations of bond lengths and angles around their equilibrium positions
and are exited at all temperatures. They are exited numerously at high
frequencies. Anharmonic dynamics are more diverse because they range from
near zero frequency domain motions, which are motions of whole subparts,
to dihedral angle bending, which are motions of whole amino acids, and to
methyl group rotations. They are also related to conformational di�usion
and biological function.

The mean square displacement (MSD) measured from neutron scattering
and computed from a molecular dynamics (MD) trajectory for myoglobin
is shown in �g. �g. 1.1. Similar results were obtained for other proteins
and other experimental techniques like x-ray scattering and Mössbauer spec-
troscopy. One can clearly see the slope change at around 220K and the large
MSD at higher temperatures. This can be understood by di�erent models
explaining this nonlinear temperature dependence. One model [Doster et al.,
1989] consists of a two-state potential with a free-energy di�erence of ∆G

and a distance d between the states. The increased population of the higher
energy state increases the MSD above the DT. Another model [Bicout and
Zaccai, 2001] assumes two potentials with di�erent force constants. Above
the DT the population of the lower force constant potential increases and
thus also the MSD increases. Below the transition the MSD is proportional
to the temperature, which is in agreement with the explanation of single
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Figure 1.1: Temperature dependence of the isotropically averaged MSD of
myoglobin, 1/3〈∆r2〉, averaged over the exchangeable hydrogens. ¤, From
the neutron experiment; •, from MD simulations [Smith et al., 1990].

potential harmonic dynamics at those temperatures.
Because experiments have shown a strong coupling of protein and water

around the DT, dual-heat bath simulations were carried out [Smith et al.,
2006], which set the protein and the water at di�erent temperatures. They
showed that the dynamical transition was suppressed up to 300K by either
holding the protein or the water at or below 180K.

1.3 Simulation of Macromolecules
Macromolecules in general and biomolecules and proteins in particular can be
simulated with di�erent levels of detail and accuracy. This ranges from coarse
grained simulations (with e.g. an amino acid or a whole protein represented
as one beat) to quantum mechanics (QM) simulations. Since many biological
processes require atomic detail and at least ns time scale, and QM simulations
are computationally not feasible on this time scale, all-atomic MD simulation
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is often used.
All-atomic simulations are possible because of the Born-Oppenheimer ap-

proximation. It assumes that the Schrödinger equation can be separated into
an electron and a nuclei contribution because the electron motions are sig-
ni�cantly faster. It thus neglects the terms in the equation which couple
both types of motion and is so not valid for strong coupling (e.g. photo-
chemistry). Permanent multipole moments are modeled by empirical partial
charges assigned to all atoms. In the following we will always assume this
approximation and thus only take the degrees of freedom of the nuclei into
account. This allows to de�ne a so called empirical force �eld, which speci�es
all interaction energy terms, and to compute the potential energy and forces
for a certain con�guration.

The so computed potential energy or the free energy are often visualized
as an energy landscape, which is the energy as a function of the nuclei coor-
dinates, to show e.g. folding funnels or transition states. Since every atom
out of N atoms has three degrees of freedom, the potential energy is a 3N

dimensional function and can be described as a hyper-surface in a 3N + 1

dimensional space.
The complexity and limitation of macromolecule simulations arise mainly

from the high dimensionality and the required time scale. An example for a
value, which is di�cult to compute because of the high dimensionality, are
properties of a single minimum [Wales, 2003]. For a vast number of minima
it is impossible to count or characterize all, so the practicability depends on
this number. Although there is no analytical expression for the number of
minima nmin as a function of the number of atoms N , also because it is system
dependent, simple theories and observations show an exponential growth of
nmin(N). This can be understood by looking at the system subdivided into
Nr equivalent subsystems of z atoms each. Then the number of minima can
be written as

nmin(Nrz) = nmin(z)Nr (1.1)

because each minimum in one local region combined with any minimum
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in another local region form a local minimum in the whole system. This
exponential growth renders it impossible to analyze all minima for larger
systems.

The second limitation, related to time scale, arises from the gap between
the simulation time-step and biologically and chemically relevant time scales
in the µs range. Because of accuracy the maximum simulation time-step
is limited by the fastest vibration. For all-atomic MD of biomolecules, this
is the covalent bond length vibration of hydrogen atoms, which is about
10fs, limiting the simulation time-step to 1fs. Thus 109 steps are required
to reach the µs time scale and so even on the largest computer clusters it is
only possible to compute a few hundreds ns long trajectory on one day of
simulation [Fitch et al., 2006].

The harmonic dynamics can be investigated from a computational point
of view by the NMA method, which is further explained in the theory part.
Because this does not require any MD simulations, this is computationally
very fast. The anharmonic dynamics can be investigated by analyzing a MD
trajectory with principal component analysis, Langevin dynamics or MSD
analysis. Since these methods require a molecular dynamics trajectory, the
analysis is limited to time scales feasible for MD.
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Chapter 2

Theory

2.1 Normal Mode Analysis
The Normal Mode Analysis (NMA) is a quadratic approximation of the po-
tential energy around a local minimum. In the area of validity the dynamics
can be described with just the second derivative matrix of the potential en-
ergy, which is also called the Hessian matrix.

The Taylor expansion of the potential energy V (r) is calculated to the
second order, where r is a vector in the 3N con�gurational space of a system
with N atoms. By setting the potential energy to zero at the minimum
(V (rmin) = 0 kcal/mol) the expansion becomes

V (r) =
1

2
r†Hr with Hij =

∂2V

∂ri∂rj

. (2.1)

Writing Newton's Second Law in vector notation using the previous equa-
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tion, results in

Mr̈ = −∇V (r) (2.2)

with M =




m1 0

m2

...

0 mN




(2.3)

Mr̈ = −Hr (2.4)

where mi is the mass of atom i. This di�erential equation can easily be solved
using mass-weighted coordinates u = T †r, where T is the matrix transform-
ing the mass-weighted coordinates to the original coordinates. Then M

becomes 1 and it follows

Λ = T †HT (2.5)
ü = −Λu (2.6)

This is a decoupled second order linear di�erential equation and thus has
the solution

uk = Ck cos(ωkt + φk) with ωk =
√

λk (2.7)

where λk is the k-th eigenvalue of Λ and φk the phase of the motion. Con-
cluding it can be stated that only the eigenvalue problem of the Hessian
matrix has to be solved to derive an analytical expression for the equation
of motions in this approximation. Because the di�erential equations are de-
coupled the motions are independent and any linear combination is also a
possible motion.

2.2 Instantaneous Normal Mode Theory
To also describe the more challenging anharmonic dynamics using the second
derivative matrix, the Instantaneous Normal Mode (INM) approach com-
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putes the Hessian matrices for a number of non-minimized sample con�gu-
rations. Because they are not (fully) minimized the curvature and thus the
eigenvalue can be negative. Dynamical properties can be computed from
the Hessian matrices by linear relations, which were partly derived between
the average fraction of di�usive modes on the one hand and on the other
the self-di�usion constant or the con�gurational entropy [Keyes, 2000, 2006,
1994, 1997, La Nave et al., 2000, 2001, 2002]. They are either based on
the random energy model or on Stillinger's Inherent Structure (IS) concept.
These two will be explained in the next subsection. Equipped with this linear
relation, INM is a non-equilibrium statistical theory connecting a dynamical
property (e.g. di�usion constant) to an equilibrium average, in this case the
curvature of the energy landscape of sample con�gurations. Despite much
work on these derivations by di�erent groups, no single comprehensive the-
ory has been developed yet. The derivations relay on many approximations
and have still open questions [Bembenek and Laird, 1995, Cho, 1994, Gezel-
ter et al., 1997, Keyes, 1997, Keyes et al., 1997, Li and Keyes, 1997, 1999,
Li et al., 1998, Madan and Keyes, 1993, Moore and Keyes, 1994, Sciortino
and Tartaglia, 1997], some of which will be described after each derivation.
The best evidence for the linear relation for liquids comes thus from sev-
eral numerical results, which show a very good agreement over many decades
[La Nave et al., 2000, Li and Keyes, 1999]. An intuitive connection is that the
fraction of negative modes fu is by de�nition equal to the fraction of direc-
tions in con�gurational space with negative curvature. Assuming the system
is near a local minimum, the force is approximately zero (F ≈ 0). Most of
the time (larger Boltzmann weight) and for most of the system (see below
for composite landscape) this is true. In this case directions along negative
modes are unstable because the force is driving the system away from the
local minimum and therefore these modes are called unstable modes. So it is
reasonable to assume that di�usion will happen mainly in the fu-dimensional
subspace. By further assuming that the contribution of all possible di�usive
directions is nearly the same, the self-di�usion constant D is proportional to
fu (D ∝ fu). In the following, di�erent derivations will be presented.

Afterwards di�erent �ltering methods will be discussed. They compute
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the subset of unstable modes out of all negative modes. For liquids it was
shown that the linearity to the number of unstable modes only holds after
this �ltering and thus is essential for applying the INM approach and most
�ltering methods were material speci�c [Keyes, 2006]. Because of the impor-
tance of the �ltering method to the approach and its material dependence,
we focused on evaluating these methods for biomolecules. Another problem
is the choice of the coordinate system. Since the system is not minimized,
the results are not independently of it. It is still unresolved which coordi-
nate system has to be used. We assume in the following that the Cartesian
coordinate system is adequate.

2.2.1 Derivation based on the Inherent Structure ap-
proach

The Inherent Structure (IS) de�nes a basin as the region of the energy land-
scape, for which steepest descent minimizations started at any point con-
verges to the same minimum [Stillinger and Weber, 1982, 1984]. Stillinger
and Webber introduced it to understand the dynamics during melting. The
participation function Q(T ) as a function of temperature T can be subdi-
vided onto all minima. Written as an integral over all possible minimum
energies, one gets

Q(T ) =

∫
dUmΩ(Um)〈Qm(Um, T )〉e−βUm (2.8)

where Um is the energy of a certain local minimum, Ω(Um) is the distribution
of those energies of all local minima, 〈Qm(Um, T )〉 is the participation func-
tion inside each IS basin averaged over all basins with the same minimum
energy and β = 1

kT
with k being the Boltzmann constant.

The INM derivation, based on the IS notion, connects the self-di�usion
constant D(T ) to the escape rate R(T ) out of one basin which in turn is
connected to the fraction of di�usive modes. This is based on the observa-
tion that di�usion requires the system to visit di�erent IS basins, which are
connected by barriers and these contribute to the fraction of negative modes.
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This can be written as

D(T ) = 〈(δR)2〉R(T )/6N (Markov Approximation) (2.9)
R(T ) ∝ NrS(T ) (2.10)

fu(T ) =
1

3z
S(T ) (2.11)

⇒ D(T ) ∝ fu(T ) (2.12)

where R is the rate the system is visiting di�erent IS, δR is the displacement
of successive IS, Nr is the number of local regions, S is the saddle sum and
z is the number of atoms per local region. Eq. 2.10 and 2.11 will be derived
next.

By decomposing the participation function not only by the minima as for
IS but for all stationary points, the Qm in eq. 2.8 can be written as

Qm = Qmm +
∑
s∈m

Qms

m(s)
e−β(Us−Um) (2.13)

where Qmm or Qms are computed in the subbasin belonging to a minimum
or a saddle and the latter is divided by the number of minimum basins m(s)

sharing one saddle. Using this Qm eq. 2.8 becomes

Q(T ) =

∫
dUmΩ(Um)Qmm(Um, T ) (1 + S(Um, T )) e−βUm (2.14)

with

S(Um, T ) =

〈∑
s∈m

Qms

m(s)
e−β∆Us

〉
/Qm(Um, T ) (2.15)

where we assumed that S(Um, T ) ¿ 1. fu is now written in a form similar
to Q(T )

fu(T ) =

∫
dUmΩ(Um)e−β∆Um f̄u(Um, T )/Q(T ) (2.16)
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with

f̄u(Um, T ) =

〈∑
s∈m

Ks

3Nm(s)
Qmse

−β∆Us

〉
(2.17)

where Ks is the saddle order. We now assume that Ks is self-averaging and
so we extract a mean, e�ective saddle order Ke, it follows

f̄u(Um, T ) =
Ke(Um, T )

3N
S(Um, T )Qmm(Um, T ). (2.18)

In the thermodynamic limit the most probable minimum energy Um(T ) dom-
inates the Um integrals and so eq. 2.14 becomes Q(T ) = Qmm(Um, T ) for
S(Um, T ) ¿ 1. Also integration eq. 2.16 with f̄u(Um, T ) from eq. 2.18
becomes

fu(T ) =
Ke(T )

3N
S(T ) (2.19)

dropping the Um(T ) argument for functions of both Um(T ) and T .
We now assume the system consists out of a number of local weakly in-

teracting regions Nr with each z ∼ O(1) atoms. We further assume the local
regions are moving independent and dominant saddles in the local regions
are ordinary transition states, K = 1. Thus the mean e�ective saddle order
becomes equal to the number of local regions, Ke(T ) = Nr. Replacing Ke(T )

by Nr = N
z
in eq. 2.19 we have derived eq. 2.11. This result becomes plausi-

ble by noticing that fu is proportional to the average number of regions above
the in�ection point in the approximation of the weakly interacting regions.

Next we will derive eq. 2.10. The average rate of escape from a basin is
R(T ) = NrRloc(T ) with Rloc(T ) computed for a single local region. Using
the transition state theory the rate r of crossing a speci�c barrier can be
computed as

r = κ(ωs)
(ωm

2π

)
e−βUs (2.20)

where wm and ws are the normal mode frequencies computed at the minimum
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and the saddle. This can be generalized for many dimensions by multiplying
with the cross chapter for the saddle divided by the one for the minimum.
Those cross chapters can be computed as the con�gurational integral divided
by the length along the reaction coordinate. So r becomes

r =
lm
ls

Qms

Qmm

κ(ωs)
(ωm

2π

)
e−βUs (2.21)

where lm and ls are those lengths. A harmonic approximation for lm gives

lm = (2πkbT/meω
2
w)1/2 (2.22)

with me being an e�ective mass. The full rate can now be computed by
integrating over frequency

R(T ) = Nr(2kbT/πme)
1/2

∫
dw

κ(ω)

ls(ω)
S(ω, T ) (2.23)

with

S(ω, T ) = 2〈Qmse
−β∆Us〉(ω, T )s(T )〈n(ω, T )〉/Qm(T ) (2.24)

where s(t) is the average number of transition states connected to one min-
imum and n(ω, T ) is the total distribution of unstable frequencies of all the
saddles connected to one minimum. Integrating S(ω) we see that

∫
S(ω, T )dω = S(T ). (2.25)

By factoring out S(T ) from the integral above R(T ) becomes

R(T ) = Nr(2kbT/πme)
1/2

[∫
dw

κ(ω)

ls(ω)
S(ω, T )/S(T )

]
S(T ). (2.26)

The ratio S(ω, T )/S(T ) can also be rewritten as normalized distribution of
the unstable frequencies [Keyes, 2006]. We now assume that the integral
containing this ratio and κ(ω)/ls(ω) has only a weak T dependence. Thus
we can write R(T ) ∝ NrS(T ) which is eq 2.10.
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Together with the derivation of fu we thus derived that both the rate
R and fu are proportional to the saddle sum S. Using also the Markov
approximation for the self-di�usion constant written as the eq. 2.9, we now
derived the proportionality between the self-di�usion constant D and the
fraction of negative modes fu (D(T ) ∝ fu(T )).

The derivation is limited to lower temperatures because both the Markov
and the S(Um, T ) ¿ 1 assumption are not valid for higher temperatures.
This makes the derivation questionable above the dynamical transition tem-
perature.

2.2.2 Derivation based on the Random Energy Model
The random energy model (REM) was originally developed for spin glasses
[Derrida, 1980, 1981]. It was then adapted to biomolecules [Bryngelson and
Wolynes, 1987]. Because of the large number of interactions and the central
limit theorem, one expects a Gaussian distribution for the sum of all inter-
action energies in the case of a random amino acid sequence. In this model,
a local region has a ground state with a �xed energy and a number of exited
states. The interaction energy of neighboring regions is a constant in case
both regions are in the ground state and a random value otherwise. Every
REM state is identi�ed with a Kth order stationary point with K neighbors
with lower energy and Ncn −K neighbors with higher energy, where Ncn is
the number of connected neighbors. Thus fu can be computed as

fu(U) = p<
c (U) =

∫ U

−∞
dU ′GC(U ′, U) (2.27)

where GC(U ′, U) is the energy distribution of states connected to a state with
energy U and p<

c (U) is the probability that a connected state has a lower
energy.

The contributions to the rate R of transitions is computed independently
for neighbors with lower and higher energy, each with a Metropolis ansatz.
For the neighbors with lower energy there is no Boltzmann weight and thus
R< = R0Ncnfu. For those with higher energy it can be shown that the
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rate is also proportional to fu [Keyes et al., 2002]. By again using the
proportionality between D and R, also the REM model predicts D ∝ fu.

2.3 Filtering Methods
From the beginning of the INM method, it was noticed that some negative
modes are not connected to di�usion and thus should be �ltered out and the
property linear to the self-di�usion constant is then the number of modes
in this subgroup of di�usive modes. A �rst study showing that was on a
Lennard-Jones liquid [Madan and Keyes, 1993]. In this case the �ltering was
done by subtracting from the number of negative modes for the liquid the the
number of negative modes observed for the crystal. It was found out that this
our cut-o� based �ltering methods were material speci�c and subsequently
di�erent �ltering methods were developed to separate the di�usive modes out
of all negative modes. With this �ltering the linear relationship was found for
many materials. The later methods are either based on minimization prior
to computing the Hessian matrix or use the energy landscape view.

2.3.1 Double-Well Modes
For the landscape based methods double-well (DW) modes are found by
calculating the energy pro�le along the negative modes [Bembenek and Laird,
1995]. While doing this the Hessian matrix is not recomputed, even though
the direction of the mode associated to a �xed frequency changes quickly
while moving away from the instantaneous con�guration. This causes the
energy to raise quickly along the mode [La Nave et al., 2001] because of Van-
der-Waals repulsion. This energy di�erence can be seen in �g. 2.1. This error
makes it impossible to �nd more distant saddles, and hence the number of
DW modes are connected to the number of close-by saddles.

Unfortunately the proportionality of the number of DW modes compared
to all negative modes is not better for all materials [Riberio and Madden,
1998]. Also for some DWmodes the two one-dimensional con�gurations along
the mode do not belong to di�erent inherent structure (IS) basins [Gezelter
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Figure 2.1: A double-well pro�le with the error caused by neglecting the
change of direction of a mode (solid line) with respect to one with a �xed
frequency and thus a changing direction (dotted line). [La Nave et al., 2001]
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Figure 2.2: A DW pro�le and the escape �ltering [La Nave et al., 2001]

et al., 1997] proving that the one-dimensional saddle found this way is not a
saddle in all dimensions.

2.3.2 Escape Modes
The �nding that DW modes not always minimize to di�erent IS basins, lead
to the de�nition of escape modes [Donati et al., 2000, La Nave et al., 2001].
For the escape �ltering the two one-dimensional minima along the mode on
both sides of the saddle are minimized. These minimizations, by de�nition
of the IS basin, check whether the two one dimensional minima belong to
the same IS basin. Those modes for which the minima don't belong to the
same basin are escape modes or true DW modes and the others are false DW
modes. This is illustrated in �g. 2.2. For water the number of escape modes
represented the self-di�usion constant very well [Cho, 1994, La Nave et al.,
2000].
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Figure 2.3: Fraction of unstable modes computed with partial minimization
for Lennard-Jones liquid (b) and crystal (a) vs. minimization steps for dif-
ferent temperatures increasing from bottom to top [Chowdhary and Keyes,
2002].

2.3.3 Minimization based Filtering
Besides those two energy landscape based methods there are two minimiza-
tion based methods. By minimizing the squared gradient |∇U |2 the system
is driven to the next stationary point and the order of the stationary point
is then used as the number of di�usive modes.

The partial minimization method uses a small number of minimization
steps compared to that required for a full minimization. For Lennard-Jones
liquid and crystal, it was found that the negative non-di�usive modes van-
ished with the �rst minimization steps and only the di�usive modes persisted
[Angelani et al., 2000]. This result is shown in �g. 2.3 and can be understood
because the gradient along the di�usion path is small. The Hessian matrix is
thus computed after a speci�c number of minimization steps and the fraction
of negative modes of this matrix is used as fraction of di�usive modes.

For all those four �ltering methods linear proportionality to the self-
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di�usion constant was found at least for some materials. The computational
methods used to test the proportionality for these methods for proteins will
be discussed in the next chapter.
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Chapter 3

Methods

3.1 Molecular Dynamics and Force Fields
The most frequently used methods for all-atomic simulations are Monte Carlo
(MC) and molecular dynamics (MD). Both methods need a force �eld (FF)
to compute the energy (and forces) of a certain con�guration. In case one
wants to simulate with all-atomic details, this FF speci�es the interaction
constants for all pairs of atoms. Both methods can also be applied to coarse
grained simulations.

All-atomic MD was used for this project so I will only explain this method.
For the simulation the time is discretized in time steps ∆t (∆t ≈ 1 fs). For
each time step the force acting on each atom Fi = −∂V

∂ri
is computed by

summing up all FF terms. The so computed acceleration ai (Fi = mai) is
integrated numerically, most often using the formula [Verlet, 1967, 1968]

x(t0 + ∆t) = 2x(t0)− x(t0 −∆t) + a∆t2 (3.1)

A popular FF named CHARMM was used in its version 22 and 27
[Foloppe and MacKerell, 2000]. It uses two-, three- and four-body terms
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between bonded atoms and the formula is

V =
∑

bonds

kb (b− b0)
2 +

∑

angles

kθ (θ − θ0)
2 +

∑

dihedrals

kφ [1 + cos (nφ− δ)]

+
∑

impropers

kω (ω − ω0)
2 +

∑

Urey−Bradley

ku (u− u0)
2

+
∑

nonbonded

ε

[(
Rminij

rij

)12

−
(

Rminij

rij

)6
]

+
qiqj

εrij

(3.2)

The two-body term depends on the distance b between the atoms and is
harmonic. All harmonic terms have two constants: a spring constant and
an equilibrium value. Of the two harmonic three-body terms one depends
on the angle θ and one on the distance u. The latter is the Urey-Bradley
term. The four-body term depends on the dihedral angle and can be either
harmonic or periodic. The harmonic term is called improper. These terms
are illustrated with animations at [Stote et al., 1999].

The last two terms are the nonbonded terms representing the Van-der-
Waals and electrostatic interaction. Because the electrostatic interactions are
shielded signi�cantly under physiological conditions by the water, which is a
polar solvent, an explicit or implicit solvent is required for biological simula-
tions. In our case the solvent is explicitly modeled, meaning the simulation
box is �lled with simulated water molecules.

For larger molecules more advanced algorithms are needed for comput-
ing the long range interactions because directly computing all pairs has a
O(N2) complexity. The easiest method, a cut-o� radius, has been shown
to introduce a large error for explicit solvent simulations. In our case the
Particle-Mesh Ewald method [Darden et al., 1993] was used. It sums the
short range interaction in real space and the long range interaction in Fourier
space. Because each summation is converging fast in their respective space,
the computation can be truncated with a good accuracy and bringing the
computational complexity to O(N log N).
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3.2 MD details for the sample systems
To apply the INM method and to compute the INM frequencies sample
con�gurations for the two proteins, myoglobin and the scorpion toxin, are
needed. These sample con�gurations were taken from molecular dynamics
trajectories. Though it is not necessary to take these con�gurations from
a MD trajectory, doing so helps in comparing the results to other methods
(in this case the MSD). For both proteins the CHARMM program [Brooks
et al., 1983] with the CHARMM all-atom force �eld, explicit solvent in a
rectangular box, Particle Mesh Ewald (PME) electrostatics, NPT ensemble
and the Verlet integrator with a step-size of 1fs was used.

The trajectory for myoglobin was computed by K. Moritsugu [Moritsugu
and Smith, 2005]. He used the CHARMM version 30b2 with the CHARMM
22 force-�eld with a box size of (57.5 ± 1.5)x(53.5 ± 1.5)x(42 ± 1)Å3 with
3090 water molecules and a total of 11780 atoms. The PME had a real-space
cut-o� of 12Å and Gaussian width κ = .34Å−1. Trajectories were computed
for temperatures from 120K to 300K in steps of 10K. The trajectories were
calculated by K. Moritsugu for 1ns for all temperatures and I. Daidone has
computed up to a total of 5ns for T=190,200,..,250K.

MD simulations of a crystal with 4 scorpion toxin proteins were carried
out by M. Krishnan (not published yet) with CHARMM 27 force-�eld for
a range of temperatures from 20 to 300 K in steps of 20 K. Including the
water the system has 5116 atoms and the box size is 43.8x39.6x27.7Å3. At
each temperature, the system was equilibrated for 1 ns followed by a 1 ns
production run during which atomic coordinates were stored at every 50 fs.
40 sample con�gurations were chosen for each temperature each separated
by 5 ps from the end of the trajectory.
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3.3 Computing Hessian Matrices for Large Sys-
tems with PME

Computing the Hessian Matrix for the whole system including the water with
the correct electrostatic terms is computational intensive. For the program to
be capable to compute the Hessian matrix analytically an analytical expres-
sion of the second derivative for all terms in the energy function is needed.
A number of programs (GROMACS [Lindahl et al., 2001], NAMD [Phillips
et al., 2005], LAMMPS [Plimpton, 1995], CHARMM [Brooks et al., 1983],
VMD [Humphrey et al., 1996], BALL [Moll et al., 2006]) were analyzed on
whether they can compute the matrix analytically with PME electrostatics
and whether they can compute it in parallel on several processors. None is
able to do either.

So we were forced to compute the matrix with a �nite di�erence method
and in serial on a single processor. For a system with N atoms, the �nite
di�erence method computes the �rst derivative of the energy function (the
force) for a small displacement to both sides for each of the 3N directions.
Thus 6N force calculations are needed. We used CHARMM because already
the trajectories were done with it and no other program had a signi�cant ad-
vantage. In case one could compute the second derivative analytically, either
because it is added for PME or one is not using PME, these computations
would be signi�cantly faster.

After the Hessian matrix is computed it has to be diagonalized. Di-
agonalizing the whole matrix has a O(N3) complexity. Because only the
negative modes are required using an iterative eigenvector algorithm the
problem could be reduced by the factor 1 − fu, with the fraction of nega-
tive modes fu ¿ 1. CHARMM has one iterative method implemented, the
Diagonalization In a Mixed Basis [Mouawad and Perahia, 1993], but this
implementation can not use the �nite di�erences, thus we had to diagonalize
the whole matrix.

The non-iterative method was not only less e�cient, but also required
more memory. Even though it is possible to diagonalize in place with the
Householder reduction followed by the QR algorithm [Press, 1992], which is
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task total time
Hessian matrices (6.5 hours each) 179 days
Energy pro�les (0.5 minutes each) 150 days
Total: DW �ltering (600 matrices, pro�les) 313 days
Minimization (15 minutes each) 2 years
Total: escape �ltering (DW, minimization) 3 years
Total: partial minimization (45 matrices) 12 days
Total: gradient minimization 123 days

Table 3.1: Computation time for scorpion toxin for current CPUs (Opteron,
Athlon MP, Pentium 4) with 1.8-3GHz

also more e�cient than the Jacobian transformation for larger matrices, the
non-iterative diagonalization in CHARMM is not in place with one matrix
in single precision and thus requires 14 bytes per matrix element in memory.
The space of one matrix is (3N)2 ∗ 14 byte so that the scorpion toxin (5116
atoms) requires for both matrices 3.1GB and myoglobin (11780 atoms) re-
quires even 14.1GB, limiting the number of available computer systems able
to do these calculations. In total we computed about 660 Hessian matrices,
and for each the process of computing it with �nite di�erences and then di-
agonalizing it took about 6.5 hours for the scorpion toxin and 3.2 days for
myoglobin. All compute times are summarized in table 3.1.

3.4 Filtering Modes

3.4.1 Landscape based �ltering
The landscape based �ltering methods were implemented as a CHARMM
input script. CHARMM has the advantage that all required functions are
implemented and can be executed with a single command. The used func-
tions are: reading the CHARMM computed eigenvector �les and coordinate
�les, evaluating the energy for a certain con�guration and energy minimizing
the system. The disadvantage of using the CHARMM syntax is that it is
limited compared to a regular programming language. E.g. it has only the
IF and GOTO commands as control structures. This makes the program less
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readable compared to languages with loops [Dijkstra, 1968].
The script, which is printed in the appendix A, reads the selected sample

con�guration and the computed eigenvectors. It then evaluates the energy
along one eigenvector until an energy threshold is reached and saves this
energy pro�le to a text-�le. Using the pro�le it is evident whether the pro�le
along this mode has one or two minima. By applying this procedure to
all negative modes of all sample con�gurations, we have computed the DW
�ltered average fraction of unstable modes. In total there were about 400,000
negative modes and each took about half a minute totaling to about 150 days.

To also identify escape modes the DW modes are additionally examined
by energy minimization. As starting structures for these minimizations the
prior identi�ed 1-dimensional minima were used. As minimization method
the adopted basis Newton-Raphson method (ABNR) was used with 1000
steps. This minimization method was found out to be the fastest. The num-
ber of steps we decided after some test minimizations were run. Those are
described in the results section. After the minimization the distance between
the two minimized con�gurations were computed and assumed to have con-
verged to one minimum below a certain threshold. The method, the number
of minimization steps and the distance cut-o� were chosen after convergence
tests. Since the minimizations are the most computing time consuming part,
a more e�cient minimization scheme would be most important for speeding
up the escape �ltering. In total about 80,000 minimizations were done with
15 minutes for each totaling to about 800 days.

A similar procedure as the escape �ltering was also applied to all modes
including the single wells. Since it is not possible to use the 1-dimensional
minima in this case, the starting structures were chosen with an energy or a
distance criterion equally to both sides of the sample con�guration. The rest
of the procedure was identical, so a very similar CHARMM script was used.

The three long compute task, Hessian matrices, energy pro�les and min-
imizations had to be run in parallel, in order to �nish them within the time
of the thesis. Instead of parallelizing a single task because for the matrices
this was not achievable within the available time and for the minimization
it would have been ine�cient, the numerous tasks were run independently
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in parallel. Therefore a very small C program using MPI was written which
executes the CHARMM script for a group of tasks once for every task in
parallel on a cluster. The source is printed as appendix B.

3.4.2 Minimization based �ltering
The minimization based methods were implemented with small CHARMM
scripts. After reading the sample con�guration, it was minimized and then
the Hessian matrix was computed and diagonalized to compute the fraction
of unstable modes. Because only very few minimization steps were needed
for the partial minimization method, the minimization was much faster than
the computation of the diagonalized Hessian matrix. The Hessian matrices
had to be recomputed because the earlier computed ones for landscape based
�ltering were of course without the minimization before. This took again 6.5
hours per matrix.

The gradient minimization requires the second derivative matrix of the
energy function because to minimize a function its derivative is needed and
the derivative of the squared gradient as a function of the second derivative
matrix. Here the same problem as with the iterative diagonalization arose.
The Hessian matrix is not available in CHARMM with a PME term and
the gradient minimization was not implemented with the �nite di�erence
method. Because the second derivative matrix is needed for every minimiza-
tion step and the �nite di�erence method is computational intensive it is not
a very practical method. In order to compare also this �ltering method, this
option was added to CHARMM. For our system it took about 8 days for one
con�guration to be minimized by 60 steps. This would also be faster using
an analytical expression of the second derivative for the PME term.
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Chapter 4

Results

4.1 Model systems
We used two proteins for this thesis. Myoglobin is a cytoplasmic hemoprotein
and was the �rst crystallographically resolved protein. It is shown in �g. 4.1.
We used the protein database (PDB) [Berman et al., 2000, 2003] structure
1A6G [Vojtechovsky et al., 1999], which is myoglobin from the sperm whale.
It consists of a single polypeptide chain of 154 amino acids and a heme group.
It is named after the structurally and functionally similar and evolutionary
related hemoglobin and its main location in the cardiac myocytes. It can
bind O2 and can therefore store and transport it.

Di�erent from hemoglobin it does not transport the O2 in the red blood
cells but from the red blood cells to the mitochondria and it does not have a
sigmoid-shaped but a logarithmic saturation function of the oxygen binding
a�nity as a function of the concentration [Ordway and Garry, 2004].

The secondary structure is composed of eight α-helices and the heme
group is �xed by two histidine residues, His64 and His93. The central iron
ion is bound to �ve nitrogen atoms, part of four pyroles and the His93. The
sixth position binds the O2 or other ligands as NO or CO. It is of great
interest because it is the simplest protein capable of reversible oxygenation.

The second protein studied is a scorpion toxin, the Toxin II from the Scor-
pion Androctonus australis Hector, which has the protein database id 1ptx
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Figure 4.1: Sperm whale myoglobin protein. For the heme group the bonds
are shown and the CO molecule is shown as orange Van-der-Waals spheres.

Figure 4.2: The crystalline unit cell of the scorpion toxin (1PTX)
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[Housset et al., 1994]. The structure was resolved using X-ray di�raction and
is shown in �g. 4.2. It is neurotoxic and is classi�ed as a long α-toxin. It has
64 residues and so medium sized for a long toxin (60 to 70 residues). Scorpion
toxins are classi�ed depending on their binding to brain synaptosomes and
their electrophysiological e�ect as either α or β type. These long toxins bind
to NA+ channels and can be speci�c to mammals or insects. The secondary
structure is composed of one α-helix and one β-sheet. The Lys58 amino-acid
is the most reactive.

4.2 Results for Myoglobin
As �rst step of the INM method the Hessian matrices for two sample con�g-
urations and four temperatures were computed. The sample con�gurations
were taken from the MD trajectory and the system was unchanged, thus the
same full hydration was included. Only very few matrices could be com-
puted because of the computation time discussed in the last chapter. The so
computed frequencies give the frequency spectrum of myoglobin, which are
shown for two temperatures in �g. 4.3. For the con�guration taken at 280K
temperature, the spectrum is lower at around 500 cm−1 and higher for imag-
inary frequencies (the imaginary frequencies are always shown as negative
in the graphs) compared to the con�guration taken at 150K. The spectra
for the not shown temperatures (190K, 220K) show the same trend. The
two spectra for the two con�gurations taken at same temperature are very
similar. Even though a temperature dependence of fu is very likely from this
result, a thorough analysis is not possible because of the limited number of
spectra computable in the available time.

To test one possibility to speed up the computation of the Hessian ma-
trix, the degrees of freedom of the solvent were decreased, to see whether
one of these reduced systems would resemble the whole system. This could
then speed up the computation signi�cantly because the computation time
for the diagonalization of the matrix is O(N3) with N being the degrees of
freedom. The degrees of freedom were reduced by either �xing the water, us-
ing smaller amounts of solvation (as box or shell), or using no solvation. The
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Figure 4.3: Comparison of frequency spectra for di�erent temperatures and
time steps

comparison is shown in �g. 4.4 and shows that only the shell of water gave a
roughly similar spectrum to the one obtained with full hydration. Because it
is di�cult to estimate the e�ect of this di�erence and the computation time
is still very large, we decided that a smaller model system should be used
and chose the scorpion toxin for the rest of the simulations.

4.3 Results for the scorpion toxin

4.3.1 Comparison to MSD
As a benchmark for the INM method the self-di�usion constant was com-
puted from the Mean Square Displacement (MSD) of a MD trajectory. The
self-di�usion constant can be computed from the slope of MSD as a func-
tion of time. The MSD was computed after a translation and rotation with
least-square-�t relative to the starting structure. In �gure 4.5 the resulting
self-di�usion constant is shown as a function of temperature for the scorpion
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Figure 4.4: Comparison of frequency spectra for di�erent solvation (bin size
scaled for better comparison)

toxin, for both the whole system including the solvent and only the protein
by itself. It shows clearly the dynamical transition at around 220K.

4.3.2 Results for di�erent �ltering methods
As the �rst necessary step for the INM method, the Hessian matrices were
computed for 15 temperatures and 40 con�gurations each. The con�gurations
were taken from the last 200ps of the MD production run in steps of 5 ps.
The number of negative modes without �ltering are shown in �g. 4.6. One
can see that fu is almost proportional to the temperature, but di�erent to
the result obtained from MSD, with a small decrease of slope for higher
temperature and no slope change at the dynamical transition temperature.

For the landscape based �ltering methods, the energy pro�les were com-
puted, by evaluating the potential energy in steps along the modes. A few
sample DW pro�les are shown in �g. 4.7. The step-size is automatically
adjusted during the computation, so that the number of steps, and thus
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20 60 100 140 180 220 260 300
temperature / K

0

100

200

300

400

500

600

700

nu
m

be
r 

of
 n

eg
at

iv
e 

m
od

es

Figure 4.6: Number of negative modes for the scorpion toxin over tempera-
ture

38



-2 -1 0 1 2
displacement / Å

-11205

-11204

-11203

-11202

-11201
po

te
nt

ia
l e

ne
rg

y 
/ k

ca
l/m

ol

Figure 4.7: Sample DW pro�les for a con�guration computed at 300K

precision, is similar for all modes.
The contribution to the number of negative modes by the protein is com-

puted using a participation ratio, which is de�ned for each negative mode
via its eigenvector. The normalized eigenvector of the mode, in the con�g-
urational space of the system, is projected onto the protein subspace. The
length of this projection is the participation ratio.

It was found, similar to the liquid studies that there are no double well
modes with positive frequency for any of the analyzed con�gurations. This
can be understood by the di�erence between the real energy pro�le and
the computed one without recomputing the Hessian matrix, as described in
ch. 2.3.1. The temperature dependence of the number of di�usive modes
after DW �ltering are shown in �g. 4.8 and the temperature dependence
of the average negative frequency of DW modes 〈ωu〉 in �g. 4.9. One sees
that there is no negative slope change as for the un�ltered case but the
large slope change seen for the self-di�usion constant around the dynamical
transition is not reproduced. There is only a very small slope change for those
contributing to the motion of the water, but none for those for the protein.
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Figure 4.8: Number of DW modes as a function of temperature

The average frequency, which was suggested to be the reason for the small T

dependence of the proportional coe�cient between D and fu [Keyes, 2006],
is proportional to the temperature without a slope change.

As discussed in sec. 3.4.1, for the escape �ltering the two one-dimensional
minima are checked whether they belong to the same IS basin. This is done
by minimization and for this a minimization scheme is needed. In order
to make a decision on this scheme, con�gurations along some modes were
minimized with di�erent methods and number of steps. We concluded that
the fastest method is the Adopted Basis Newton-Raphson (ABNR) and the
results with this method for di�erent number of steps for two con�gurations
are shown in �g. 4.10.

Because of the large number of minimizations required for the escape
�ltering, a compromise between a well converged minimization and an af-
fordable computation time is needed. According to the results shown in
�g. 4.10, 1000 steps were considered to be a good compromise. Nonethe-
less, because the minimization is not fully converged after 1000 steps, a
cut-o� for the euclidean distance between the two minima is needed, to de-
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Figure 4.9: Average frequency 〈ωu〉 of DWmodes as a function of temperature

cide whether these minimizations would converge to the same point after a
full minimization. To estimate this cut-o�, we used for one con�guration a
similar approach as for the escape �ltering itself. Instead of taking the one-
dimensional minima as starting structures for the minimization we took two
con�gurations to both sides for each mode with a distance of 0.014Å. This
distance was chosen because it is the average of the distances at which the
energy is kT = 0.6 kcal/ mol (with T = 300 K) higher than at the starting
con�guration. A histogram of the distances between these minima is shown
in �g. 4.11. One can see that the �rst minimum is at 0.01Å.

With this minimization scheme of 1000 ABNR-steps we analyzed all dou-
ble wells. The resulting number of escape modes as a function of temperature
computed with a cut-o� of 0.01Å are shown in �g. 4.12. The escape modes
obtained with a cut-o� of 0.01Å and 0.02Å are compared to the self-di�usion
constant computed from the MSD in �g. 4.13 and 4.14. These results with
escape �ltering show a very good agreement with the self-di�usion constant
computed from MSD compared to that obtained with DW �ltering. In the
double logarithmic plots a power �t is shown. One can see that the coe�cient
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Figure 4.12: Di�usion constant computed from MSD and number of escape
modes with a 0.01Å cut-o� for con�gurations from 800-1000ps as a function
of temperature

depends on the choice of the cut-o�, thus the uncertainty introduced by the
cut-o� prohibits a result for the coe�cient.

In �g. 4.15 a comparison of the number of escape modes for 30 con�g-
urations taken from 800-950ps and for 10 con�gurations from 950-1000ps is
shown. This is very similar for a 0.02Å cut-o� and thus not shown separately.
For the shorter trajectory the �uctuation around the linear �t is larger show-
ing that this number of con�gurations is not enough for a converged number
of di�usive modes. The �uctuation is very similar for the protein and the
whole system, suggesting a strong coupling between them.

Besides these �uctuations being very similar for the protein and the whole
system, also the participation ratio itself suggests that there is a strong cou-
pling in the motions described by the escape modes. The protein contribution
represented by the participation ratio is shown in �g. 4.16, as the number of
modes with a speci�c contribution in 1% steps. Even though the number of
modes in a 1% bin are little above average near 0, 60 and 100%, the contri-
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Figure 4.15: Number of escape modes with a 0.01Å cut-o� for con�gurations
from 800-950ps and 950-1000ps as a function of temperature
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Figure 4.16: Contribution of the protein for the di�erent escape modes

bution is wide-spread, thus most modes have some contribution from both
the water and the protein.

The minimization based �ltering methods were also tested. They are
computed by �rst minimizing the potential energy or the squared gradient
with CHARMM and then computing and diagonalizing the Hessian matrix
after this minimization. In �g. 4.17 and 4.18 the results for the two methods
are shown. As for the DW �ltering, there is a slightly positive slope change in
both graphs, but not a good agreement with the di�usion constant computed
from the MSD is achieved.

4.3.3 Characteristics of escape �ltering
Because the escape �ltering gave the best results it was further analyzed.
For one sample con�guration at 300K we applied the escape �ltering method
to all modes up to 1000 cm−1. Instead of displacing along the mode to the
one-dimensional minima, we displaced until the energy is 0.6kcal/mol larger
than that of the starting con�guration or by a �xed distance, which was
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imization steps
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Figure 4.18: Number of di�usive modes after gradient minimization
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Figure 4.19: Number of modes as a function of frequency and distance be-
tween minima

explained in the last subsection because it was also used for the decision
making regarding the cut-o�. With both the distance and the energy criteria
the single and double wells can be analyzed alike. The result of this is shown
in �g. 4.11 and 4.19.

One sees that the histogram of the distances between the minima has
large peaks for certain distances. By clustering the minima from those pairs
of minima with these peak distances and measuring the potential energy
barrier between members of one cluster by Conjugate Peak Re�nement, it
was found out that many pairs connect the same basins, thus displacement
along some modes leads to the same basin. The large number of modes with
distances between the minima above 0.05Å, which can be seen in �g. 4.19,
are an e�ect of the energy criterion. It is absent when displacing always by
the same distance. The reason is that for the modes with frequencies around
zero the curvature is very small and thus the displacement is very large for
them with the energy criterion and thus increasing the chance of going to
another basin.

The fraction of modes with a distance between the minima above the
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Figure 4.20: An example landscape showing an escape mode with positive
curvature. Shown are the minimizations after displacing along the y axes.

cut-o� is almost the same for all modes including the positive and negative
ones. To illustrate why modes with positive curvature can be escape modes an
example landscape is shown in Fig 4.20. Displacement from an instantaneous
con�guration at x = 0.1 and y = π along y leads to con�gurations with only
slightly higher energy and steepest-descent paths to two di�erent minima.

This seems to question the approach of the escape �ltering method to
only analyze the DW modes. Because of the large number of minimization
steps which would be required, a �ltering method analyzing all modes by
minimization can not be tested and compared to the escape �ltering. The
comparison to the other �ltering methods showed that the escape �ltering
resulted in a much better agreement to the self-di�usion constant, thus the
combination of the DW and the escape property has giving the good result.
A possible explanation of this is that the system needs to be close to a saddle
point, which is tested by the DW �ltering as explained earlier, and the mode
has to be a true DW and not a false one, which is tested by the escape
�ltering.

Further reducing the number of modes, which have to be tested by min-
imization, would be bene�cial to computation time. Thus we looked for
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Figure 4.21: The force projected onto the mode and the frequency for all
negative modes

properties all escape modes have but can be computed without minimiza-
tion. In �g. 4.21 the modes for one con�guration are plotted as a function
of frequency and absolute force, and are colored by their type. This shows
that one can not de�ne a cut-o� for either frequency or force to separate the
escape modes.
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Chapter 5

Conclusion

With the Instantaneous Normal Mode method the self-di�usion constant can
be computed from the average number of di�usive modes of a few sample
con�gurations. We applied this method to two sample proteins, myoglobin
and a scorpion toxin. The computed myoglobin spectra have the temper-
ature dependence predicted by INM. Spectra with reduced solvation were
also computed. Out of those the one with a shell of water was very similar
to the full solvation. For an accurate INM calculation a �ltering method,
computing the subset of the di�usive modes out of all negative modes is es-
sential. Four such methods had been proposed and we tested them with the
smaller system, the scorpion toxin. Out of those the escape mode �ltering
reproduced the self-di�usion constant including the slope change around the
dynamical transition. However the total computation time required for this
method was 3 CPU-years (Athlon-MP and Opteron CPUs). An even larger
computational time required for a full minimization, only allowed a partial
minimization and thus required the use of a cut-o� for the distance between
the minima. The exponent of the power �t of the fraction of unstable modes
as a function of the self-di�usion depends on this cut-o� and thus the ex-
pected linearity could not be checked. Therefore future work should focus on
improving the minimization scheme, so that it is faster and the result is less
dependent on the cut-o�. Then the INM method with escape �ltering could
become useful for biological macromolecules and would allow to investigate
e.g. the reasons for the strong coupling seen between the protein and the
water motions.
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Appendix A

CHARMM script for landscape
based �ltering

! program computes escape modes
! the energy p r o f i l e i s computed
! then the 1−dim minima are minimized and the d i s t anc e
! between them i s computed

! needed v a r i a b l e s :
!CRDFILETYPE: sample c on f i gu r a t i on f i l e type
!CRDFILE: sample c on f i g u r a t i on f i l e
! INMFILE : he s s i an matrix
!N: l a r g e s t mode which should be computed
!PROFILEFILE : f i l e name to s t o r e p r o f i l e
!STEP: beg inning step s i z e f o r p r o f i l e

s e t I 25

!FORMat (1PG15 . 1 0 )

! Loop over modes
LABEL LOOP0

! read sample c on f i g u r a t i on
open read @CRDFILETYPE uni t 16 name @CRDFILE
read coor @CRDFILETYPE uni t 16
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c l o s e un i t 16

! read e i g enve c t o r
v ibran nmode 1
open read un i t 8 f i l e name @INMFILE
read norm mode @N thru @N f i l e un i t 8

IF @I LT 20 THEN CALC STEP @STEP * . 75
IF @I GT 30 THEN CALC STEP @STEP * 1 .5

open wr i t e un i t 9 card name @PROFILEFILE@N. dat
f i l l comp mode 1 f a c t @STEP ! t h i s i s o f f by 2%

end

gete p r i n t un i t 9
s e t STARTE ?ENER
se t J 0
s e t min0 0

!move along mode and compute energy and save p r o f i l e
LABEL LOOP1

INCR J
s e t I 0
s e t DOWN 0
se t LAST @STARTE
se t MIN −1

FORMat (F16 . 5 )
! Explor ing P r o f i l e
LABEL LOOP2

coor add
gete p r i n t un i t 9
c a l c DIFF ?ENER − @LAST
i f @i eq 0 then −

i f ?ENER GT @starte then −
i n c r min0

IF @DIFF GT 0 THEN −
IF @MIN EQ 0 THEN −

SET MIN @I
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IF @DIFF LT 0 THEN −
IF @MIN EQ −1 SET MIN 0

in c r I by 1

s e t LAST ?ENER
ca l c DIFF ?ENER − @STARTE
IF @DIFF LT @STOPE GOTO LOOP2

FORMAT

se t MIN@J @MIN
ca l c MI − @I
coor s c a l e f a c t @MI comp
coor add

ca l c I I 1/ @I
coor s c a l e f a c t @II comp
IF J LT 2 THEN GOTO LOOP1

i f @min0 eq 2 then i f @min1 eq −1 then s e t min1 0
i f @min0 eq 2 then i f @min2 eq −1 then s e t min2 0

! i f not a DW, then sk ip minimizat ion
i f @MIN1 l e 0 then GOTO NOMIN
i f @MIN2 l e 0 then GOTO NOMIN

coor s c a l e f a c t @MIN1 comp
coor add

ca l c OFFS − ( @MIN1 + @MIN2 ) / @MIN1
coor s c a l e f a c t @OFFS comp
coor add comp

! d i s t ance between 1−dim minima
coor rms
s e t 1RMSCHARMM ?RMS

! wr i t e 1−dim minima coo rd ina t e s
open wr i t e card un i t 15 name @MINDIM1CRD1FILE@N. pdb
wr i t e coor comp pdb uni t 15
c l o s e un i t 15
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open wr i t e card un i t 15 name @MINDIM1CRD2FILE@N. pdb
wr i t e coor pdb un i t 15
c l o s e un i t 15

! minimizat ion
mini abnr nstep 1000
coor swap
mini abnr nstep 1000

! d i s t ance between minima
coor rms

ca l c 1RMS ( @MIN1 + @MIN2 ) * @STEP / sq r t ( ? nato )
c a l c RMS1RMS ?RMS / @1RMS
echo mode @N RMS: ?RMS , −

RMS between 1−dim Minima : @1RMS,−
MINS: @MIN1, @MIN2, RMS/1RMS: @RMS1RMS, −
STEP: @STEP, 1RMS_C: @1RMSCHARMM

open wr i t e card un i t 15 name @MINCRD1FILE@N. pdb
wr i t e coor comp pdb uni t 15
c l o s e un i t 15

open wr i t e card un i t 15 name @MINCRD2FILE@N. pdb
wr i t e coor pdb un i t 15
c l o s e un i t 15

GOTO MIN

LABEL NOMIN
echo mode @N only 1 minimum

LABEL MIN
decr N

! end cond i t i on f o r Loop over modes
! ( has to be changed f o r going upwards )

IF @N GT 0 GOTO LOOP0
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Appendix B

MPI program to run CHARMM
distributed on a cluster

#include <s td i o . h>
#include <mpi . h>
#include <math . h>
#include <unis td . h>
#include <s t r i n g . h>
#include <error . h>
#include <s t d l i b . h>
#include <pthread . h>

extern int errno ;
int rank , s i z e , task0 ;

#define debug p r i n t f

/*
The programm s t a r t s one c en t r a l thread
d i s t r i b u t i n g to the nodes , which r e que s t a
s i n g l e new ta s k each time they have f i n i s h e d one
*/

//Request next t a s k number per MPI
int next_task ( int * task ) {

int f l a g =0;
MPI_Request r eque s t ;
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MPI_Send(NULL, 0 ,MPI_CHAR,0 , 0 ,MPI_COMM_WORLD) ;
MPI_Irecv ( task , 1 ,MPI_INT,0 , 1 ,MPI_COMM_WORLD,

&reques t ) ;
while ( ! f l a g ) MPI_Test(&request ,& f l ag ,

MPI_STATUS_IGNORE) ;
return * task >=0;

}

// thread func t i on answering the t a s k r e qu e s t s
// sending a f i n s i s h tag as soon as no t a s k s are
// l e f t
void P( int* range ) {

MPI_Request r eque s t ;
MPI_Status s t a tu s ;
int i , msg , f i n i s h ed , f l a g ;
// 0 : sending task , 1 : sending end−token
for ( f i n i s h e d =0; f i n i s h ed <2; f i n i s h e d++) {

// 0 : loop over tasks , 1 : loop over rank
for ( i =0; i <(! f i n i s h e d ?* range : s i z e ) ; i++) {

msg=! f i n i s h e d ? i :−1;
MPI_Irecv (NULL, 0 ,MPI_CHAR,MPI_ANY_SOURCE,

0 ,MPI_COMM_WORLD,& reques t ) ;
MPI_Test(&request ,& f l ag ,& s ta tu s ) ;
while ( ! f l a g )

s l e e p ( 1 ) ;MPI_Test(&request ,& f l ag ,& s ta tu s ) ;
MPI_Send(&msg , 1 ,MPI_INT, s t a tu s .MPI_SOURCE,

1 ,MPI_COMM_WORLD) ;
}

}
}

int main ( argc , argv )
int argc ;
char *argv [ ] ;

{
/* s t a r t s MPI */
MPI_Init (&argc , &argv ) ;
/* ge t curren t proces s id */
MPI_Comm_rank (MPI_COMM_WORLD, &rank ) ;
/* ge t number o f p roce s s e s */
MPI_Comm_size (MPI_COMM_WORLD, &s i z e ) ;
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i f ( rank==0 && argc <5) {
p r i n t f ( "Usage :  %s CHARMM INPUT OUTPUT START EXCLUSIVE−END\n" ,

argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

int s t a r t=a t o i ( argv [ 4 ] ) ;
int end=a to i ( argv [ 5 ] ) ;
int range=end−s t a r t ;

pthread_t thread_p ;
i f ( rank==0) pthread_create(&thread_p , NULL,

(void *) P, &range ) ; // s t a r t i n g c en t r a l thread
int task ;

//work loop f o r each node
while ( next_task(&task ) ) {

task+=s t a r t ;
char buf [ 1 0 0 0 ] ;
int i ;
s p r i n t f ( buf , "%s task=%d <%s > %s%d . out " ,

argv [ 1 ] , task , argv [ 2 ] , argv [ 3 ] , task ) ;
for ( i =6; i<argc ; i++) {

s p r i n t f ( buf , "%s %s" , buf , argv [ i ] ) ;
}

i f ( system ( buf)==−1) // s t a r t i n g work command
p r i n t f ( s t r e r r o r ( er rno ) ) ;

}
// a l l t a s k s f i n i s h e d
i f ( rank==0) pthread_join ( thread_p , NULL) ;

MPI_Finalize ( ) ;
return 0 ;

}
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