Takat B. Rawal

Postdoctoral Research Associate

Email: [email protected]
Work: 865.241.5175 

E340, Bldg. 2040
1 Bethel Valley Rd.
Oak Ridge, TN 37831-6309



Google Scholar: https://scholar.google.com/citations?user=AbWRTFgAAAAJ&hl=en



Education / Biography

Ph.D. in Physics, University of Central Florida, Orlando, FL

M.S. in Physics, University of Central Florida, Orlando, FL

B.Sc. in Physics, Tribhuvan University, Nepal



Research Interests


  • Functional Nanomaterials for plant therapeutics:

    Huanglongbing (HLB) is the most devastating disease affecting citrus plants in the United States. The small-sized zinc oxide (ZnO) nanomaterials have the potential for HLB treatment. In this regard, my research focuses on the development of an understanding of the unique properties of ZnO nanomaterials at the atomic scale. I employ first-principles calculations to study the structural, electronic, and vibrational properties of ZnO nanoparticles and their interactions with inorganic and organic molecules. 

  • Biofuels:
    Another area of my research focuses on development of understanding the structure and dynamics of components of lignocellulosic biomass in the solvent medium employing all-atom molecular dynamics simulations.   

  • Catalysis:
    Catalysis plays a critical role in chemical transformation, energy production, and pollution mitigation. My research interest is to promote the basic understanding of the properties of catalytic materials, and of the chemical processes at the surfaces and interfaces. I employ density functional theory calculations to unravel the reaction mechanisms, and use kinetic Monte Carlo simulations to obtain the reaction rates, turn-over frequencies, and selectivity for desired products.    


18. S. V. Pingali, M. D. Smith, S.-H. Liu, T. B. Rawal, Y. Pu, R. Shah, B. Evans, V. Urban, B. Davison, C. Cai, A. J. Ragauskas, H. M. O’Neill, J. C. Smith, and L. Petridis, “Local complementarity of amphiphilic co-solvents and biopolymers augments biomass pretreatment”, submitted to Sci. Adv., (2019).

17. T. B. Rawal, A. Ozcan, S.-H. Liu, S. V. Pingali, O. Akbilgic, L. Tetard, H. O’Neill, S. Santra, L. Petridis, “Interaction of zinc oxide nanoparticles with water: Implications for catalytic activity”, ACS Appl. Nano Mater., 2, 4257 (2019).

16. S.-H. Liu, T. B. Rawal, M. Soliman, B. Lee, T. Maxwell, P. Rajasekaran, H. Mendis, N. Labbé, S. Santra, L. Tetard, and L. Petridis, “Antimicrobial Zn-based “TSOL” for citrus greening management: Insights from spectroscopy and molecular simulation”, J. Agric. Food Chem., 67, 6970 (2019).

15. P. Galhenage, H. Yan, T. B. Rawal, D. Le, A. J. Brandt, T. D. Maddumapatabandi, N. Nguyen, T. S. Rahman, and D. A. Chen, “MoS2 nanoclusters grown on TiO2: Evidence for new adsorption sites at edges and sulfur vacancies”, J. Phys. Chem. C, 123, 7185 (2019).

14. K. Almeida, P. Peña, T. B. Rawal, W. C. Coley, A-A Akhavi, M. Wurch, K. Yamaguchi, D. Le, T. S. Rahman, and L. Bartels, “A single-layer of MoS2 activates gold for room temperature CO oxidation on an inert silica substrate”, J. Phys. Chem. C, 123, 6592 (2019).

13. K. Almeida, K. L. Chagoya, A. Felix, T. Jiang, D. Le, T. B. Rawal, P. E. Evans, M. Wurch, K. Yamaguchi, P. A. Dowben, L. Bartels, T. S. Rahman, and R. G. Blair, “Towards higher alcohol formation using a single-layer MoS2 activated Au on Silica: Methanol carbonylation to acetaldehyde”, ChemRxiv, (2019).

12. T. B. Rawal, M. Smerieri, J. Pal, S. Hong, M. Alatalo, L. Savio, L. Vattuone, T. S. Rahman, and M. Rocca, “Deciphering complex features in STM images of O/Ag(110) system”, Phys. Rev. B, 98, 035405 (2018).

11. T. B. Rawal, S. R. Acharya, S. Hong, D. Le, Y. Tang, F. F. Tao, and T. S. Rahman “High catalytic activity of Pd1/ZnO(10-10) toward methanol partial oxidation: A DFT+KMC study”, ACS Catalysis, 8, 5553 (2018).

10. P. E. Evans, H. K. Jeong, Z. Hooshmand, D. Le, T. B. Rawal, S. N. Alvillar, L. Bartels, T. S. Rahman, and P. A. Dowben, “Methoxy induced defects on MoS2”, J. Phys. Chem. C, 122, 10042 (2018).

9. C. S. Merida, D. Le, E. M. Echeverría, A. E. Nguyen, T. B. Rawal, S. N. Alvillar, V. Kandyba, A. Al-Mahboob, Y. Losovyj, K. Katsiev, M. D. Valentin, C.-Y., Huang, M. J. Gomez, I-H., Lu, A. Guan, A. Barinov, T. S. Rahman, P. A. Dowben, and L. Bartels“Gold dispersion and activation on the basal plane of single-layer MoS2”, J. Phys. Chem. C, 122, 267 (2018).

8. T. B. Rawal, D. Le, and T. S. Rahman, “Effect of single-layer MoS2 on the geometry, electronic structure and reactivity of transition metal nanoparticles”, J. Phys. Chem. C, 121, 7282 (2017).

7. J. Pal, T. B. Rawal, M. Smerieri, S. Hong, M. Alatalo, L. Savio, L. Vattuone, T. S. Rahman, and M. Rocca, “Adatom extraction from pristine metal terraces by dissociative oxygen adsorption: combined STM and density functional theory investigation of O/Ag(110)”, Phys. Rev. Lett., 118, 226101 (2017).

6. A. Gupta, T. B. Rawal, C. Neal, S. Das, T. S. Rahman, and S. Seal, “Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling”, 2D Materials, 4, 025077 (2017).

5. T. B. Rawal, D. Le, and T. S. Rahman, “MoS2-supported gold nanoparticle for CO hydrogenation”, J. Phys.: Condens. Matt., 29, 415201 (2017).

4. I. Tanabe, T. Komesu, D. Le, T. B. Rawal, E. F. Schwier, M. Zheng, Y. Kojima, H. Iwasawa, K. Shimada, T. S. Rahman, and P. A. Dowben, “The symmetry-resolved electronic structure of 2H-WSe2(0001)”, J. Phys.: Condens. Matt., 28, 345503 (2016).

3. T. B. Rawal, S. Hong, A. Pulkkinen, M. Alatalo, and T. S. Rahman, “Adsorption, vibration, and diffusion of oxygen on Ag(110)”, Phys. Rev. B, 92, 035444 (2015).

2. D. Le, T. B. Rawal, and T. S. Rahman, “Single-layer MoS2 with sulfur vacancies: structure and catalytic application”, J. Phys. Chem. C, 118, 5346 (2014).

1. T. B. Rawal, V. Turkowski, and T. S. Rahman, “Complementary roles of benzylpiperazine and iodine ‘vapor’ in the strong enhancement of orange photoluminescence from CuI(111) thin film”, J. Phys.: Condens. Matt., 26, 185005 (2014).